MDYV technical http://local host:8085/mdv/DOC-techguide.xml

MDYV technical

Table of Contents

Intro
Prerequisites
How does it work?
The WAR file -- openmdvp web application
Openmdv classes in mdv-dataio.jar and mdv-web.jar
mdv-dataio, the structure
mdv-web, the action driver
The flow of control in practice
Summary and advice for developers
Acknowledgements

Intro

This document describes the implementation of MDV. It isintented for programmers and integrators who would like to have a
technical introduction to the system.

This document isincluded in OpenM DV and written in DocBook. The source can be found in MDV’ s directory
src/resources/mdv/xdocs/DOC-techguide.xml

Prerequisites

Java SDK. Get it from java.sun.com. Standard versions 1.3 and 1.4 are ok.

Get the openmdvp (mind you, not openmdv) source code from cvs (cvs co openmdvp). Please check mdv.sourceforge.net for
details.

Building the installation from sources: in your openmdvp directory, issue: sh build.sh createinstallationjar (in unix systems) or
build createinstallationjar (in MS Windows systems). After awhile, your installation package openmdvp.jar isready in your
openmdvp directory. Now you can write changes to the source code and check out how they change the behaviour of the system, as
follows:

* hack some code,

* build createinstallationjar

* If you have openmdvp running (from previous iteration), stop tomcat (jakarta-tomcat-4.0.1/bin/catalina.sh stop) and remove
at least jakarta-tomcat-4.0.1/webapps.

* (Re)instal openmvdp.jar: java-jar openmdvp.jar
How doesit work?

To put it briefly, MDV is acollection of java classes and template files that are run under control of COCOON servlet inside of
Tomcat servlet container.

This enables us to make a distinction between
* storagesthat contain data,
* domain objects, i.e. objects of java classes that represent classes of objectsin the real world;
* the representation of domain objectsin XML;

¢ the user interface, i.e. HTML or some other "rendering” of XML representation of (some of the) domain objects and actions
available to the user;

lof 7 09/09/2002 06:10 PM

MDYV technical http://localhost:8085/mdv/DOC-techguide.xml

This may sound complicated, but the following example will illustrate the functionality. The basic domain object classes of
"out-of-box" MDV are Document, Category and Principal (User or Group). For each one of them, XML Converter can produce an
XML representation. Suppose auser called Adminlogsin. Thisiswhat he sees:

. Search
. Everything
. ncategorised

Thisisaview generated by XSL templates out of XML source that looks like this:

<result>
<tree>
<tr eehead>
<t reer ow>
<treecel |l |abel ="category.nane.root" id="1"/>
</treerow>
</ treehead>
<treechil dren>
<treeitem contai ner="fal se" open="fal se" sel ected="fal se">
<treerow>
<treecel |l |abel ="category.nane.search” id="1.1" />
</treerow>
</treeiten>
<treechil dren>
<treeitem contai ner="true" open="fal se" sel ected="fal se">
<t reer ow>
<treecel |l |abel ="category.nane.builtin" id="1.2" />
</treerow>
</treeitenmr
<treeitem contai ner="fal se" open="fal se" sel ected="fal se">
<treer ow>
<treecell |abel ="category.nane.all" id="1.2.1" />
</ treerow>
</treeitenmr
<treeitem contai ner="fal se" open="fal se" sel ected="fal se">
<t reer ow>
<treecel | |abel ="category. nane. uncat egorized" id="1.2.2" />
</treerow>
</treeitenmr
</treechildren>
<treeitem contai ner="fal se" open="fal se" sel ected="fal se">
<treerow>
<treecel |l |abel ="category.nanme.user" id="1.3" />
</treerow>
</treeiten>

20f7 09/09/2002 06:10 PM

MDYV technical http://local host:8085/mdv/DOC-techguide.xml

</treechil dren>
</tree>
<user |D="1" owner-iD="1">
<nane>Admi ni st r at or </ nane>
<passwor d>a2l g Ph/ yl O5Lt j r +B2ThQ==</ passwor d>
<l ogi n- name>admi n</ | ogi n- nanme>
</ user>
<docunent | i st ></ docunent | i st>
<sel ect ed- docs><docunent | i st ></ docunent | i st ></ sel ect ed- docs>
</result>

The XSL templates parse this representation in order to create a"pretty" HTML rendering of it for the user. We see that most of
XML representation is dedicated to the tree of categories, shown on the left. On the bottom, you see the user id, and in the XML
listing, of course, the corresponding XML entry. There are no documents in any of the selected categories (actually, noneis
selected) so, in the XML representation both documentlist and sel ected-docs are empty.

What about actions? Based on the objects that are selected (categories, documents), the menu bar on top shows the actions that are
available. Here, only "Add category”, "Add document” and "Logout” are available.

Theinformation that is represented using XML has to come from somewhere. As you guessed, it comes from objects. Asan
example, here'sajavaclass (in UML) User and the corresponding entry for user Admin (attribute name has been inherited from the
parent class).

Tser

-_ancryptedPaggword: String

- _loginMame: String

+checkPageword (pagewd: String) : hoolean
iteatPagewd (pagswd: String) : hoolean

“IBar s

_encryptedPasepword: a2lojPhfyI0SLEtjr+E2Thg==
_loginMame: admin
hame: Adminetrator

In the "out-of-the-box" installation, the datais eventually stored in arelational database, and retrieved from there. However, the
storage can be anything that can be interfaced by java "dataio" classes.

The WAR file -- openmdvp web application

In this section, we'll take a closer look of what files there are in openmdvp package (mdv.war). Mdv.war is a standard war file that
contains aweb application. It is deployed by Tomcat server during the startup of the server.

WEB-INF/lib -- here are the jar files needed to run the system, many of them are related to database access and XML parsing.
Mdv-web.jar and mdv-dataio.jar are, however, the core of mdv system. For details, see next section.

WEB-INF/db -- the database is here. It is accessed through port 9001 by default.

xstyles -- these are docbook stylesheets, needed to display docbook documentation.

xdocs -- documentation in docbook format.

sitemap.xmap -- the core of cocoon’s action processing.

protected/xstyles, protected/xdocs, protected/sitemap.xmap: these are the XML machinery of the MDV application. The xsp filesin

protected/xdocs contain short java extracts in order to output "just the right amount” of XML to the corresponding XSL stylesheets
(in protected/xstyles). protected/sitemap.xmap controls this by coupling together X.xsp with X.xsl.

Openmdyv classesin mdv-dataio.jar and mdv-web.jar

3of 7 09/09/2002 06:10 PM

MDYV technical http://local host:8085/mdv/DOC-techguide.xml

In http://mdv.sourceforge.net you'll find a complete annotated UML class diagram of the dataio classes, so only the main ones are
explained here. Roughly, mdv-dataio is the structure of the application, complete with possibilities to generate XML to the "outside
world" of the user agents and the "inside world" of storage systems. However, it contains nothing that takes care of the flow of
information to the user or reacts when the user clicks some link or submit button. These are handled by mdv-web ("web tier").

mdv-dataio, the structure

fi/hip/mdv/dataio contains abstract dataio classes. The implementing dataio classes are e.g. in fi/hip/mdv/dataio/rdb (relational db
access). DataAccessisa'"porta" class that provides the methods to use most other classes, i.e. it contains methods for login,
reading principals, documents, categories, saving and removing them etc. Please see the javadoc documentation of this class for
details.

CompoundDataA ccess implements DataA ccess. Using CompoundDA,, it is possible to access several storages simultaneously (or
actually sequentially). In the out-of-the-box installation CompoundDA is the class that the web tier talksto. There, it has only one
member of the compound, and that’ s the rdb data access that communi cates with the local database.

DocumentType is an interface that models Document’ s type information. DocumentType has a name and Fields that the documents
of thistype contains.

Document and Field are quite easy to understand on the basis of DocumentType. FieldlO is away be which different fields store
their data. Schemais an auxiary class for fast access of Document and Field data.

Principal, User and Group are classes to handle user and group data.
mdv-web, the action driver

The session/MDV*Action classes are an interface to HTML forms with an action parameter e.g.

<i nput type="hi dden" nane="action" val ue="categorize"/>

The basic function of the MDV* Action classes is to select the correct translation handler based on the action and then call the
handler.

A handler provides two main methods, syncGuiToModel and syncModel ToGui, and aweb interface. There are handlers for many,
if not all, classes that can have some interactions with the user (Category, Document, FieldValue, etc).

syncGuiToModel gets the stored information of the object from the storagei.e. storage to object. syncModel ToGui stores the
information contained in the object into the storage i.e. object to storage.

Webl nterface provides methods for setting the fields of the object that is being processed. Here, the strings of the web forms are
"translated" into other scalar types, for instance longs. For instance, a document type has fields that have numeric id’s. The web
interface can only provide strings, so they are converted in setFieldlds method.

The following section gives a concrete example of the flow of information when using dataio and web tier.

The flow of control in practice

From dataio to user’s browser:
The user authenticates himself as admin and arrives on the main screen. The URL is protected/protected.

As shown in protected/sitemap.xml, this URL launches the content in protected.xsp and this content is filtered through
page-html.xdl

<map: mat ch pattern="protected*">

<l-- first validate whether user has logged in -->

<map: act type="mndv-session-validator">

<l-- generate protected content -->

<map: generate type="serverpages" src="xdocs/protected. xsp"/>
<map: transform src="xstyl es/ page-htnm . xsl"/>

<map: serializel>

</ map: act >

<I-- something was wong, redirect to | ogin page -->
<map:redirect-to uri="1ogin"/>

40f 7 09/09/2002 06:10 PM

MDYV technical http://local host:8085/mdv/DOC-techguide.xml

</ map: mat ch>

protected.xsp contains axsp:logic section that retrieves all the categories accessible to the user, as well as user information and
selected documents. Here's an extract of calling dataio’s user information function:

u = ndvDA. get CurrentUser();

All thisis collected (in protected.xsp) in a string, that contains XML. Here' s how the user part isincluded in the string:

result = result + XM.Converter. Convert(u);
This string is parsed in the last part of protected.xsp:

Par ser newParser = null;

try {
newPar ser (Parser) t hi s. manager . | ookup(Par ser. ROLE) ;

I nput Source is = new | nput Source(new Stri ngReader(resuI t));
XSPUtil.include(is, this.contentHandl er, newParser);
} catch (Exception e){
System out. println("Exception in xsp"+e);

finally {
t hi s. manager. rel ease((Conponent) newParser);
}

The parsed output is sent to page-html.xd, as defined in sitemap.xsp. The following extract of page-html.xsl generates html out of
user information by calling another template:

<xsl:call-tenpl ate name="user"/>

Template "user" isin page-styles.xd and looks like this:

<xsl :tenpl ate nane="user">
You are: <xsl:apply-tenplates sel ect="result/user/| ogin-nane"/>
</ xsl:tenpl ate>

Naturally, once html has been generated, tomcat servesit to the browser.
From user’s browser to dataio:

Let’s assume the user wants to create a new category, as in the following figure:

50f 7 09/09/2002 06:10 PM

MDYV technical http://local host:8085/mdv/DOC-techguide.xml

I - Caotegory Management - Mozilla {Build ID: 2002051319} 1 |_|
Eile Edit Miews Search Go Bookmarks Tasks Help

A, P [T psem 3

14

Add category
oK |
Category name: [Giae BOGUMEATaNGN | gy

o

Gt b 2 [B DocumentDone@. | p-cf

The corresponding form (some formatting omitted) is:

<form acti on="ndv- add- cat egory” met hod="post">
<i nput size="40" nanme="set Nane" type="text">

<i nput val ue="add" name="action" type="hi dden">
<i nput value=" K " type="subnmit">

</fornp

In sitemap.xmap we find the following mapping that binds the URL mdv-add-category with destinations mdv-act-category (if
everything is ok), login (if the user is not logged in) or CATEGORYNEW (if the user gave an empty name).

<map: mat ch pattern="ndv- add- cat egory" >
<map: act type="formvalidator">
<map: par anet er name="descri ptor"
val ue="context://protected/ descriptors/parans. xm"/>
<map: par anet er nane="val i date" val ue="set Nane"/>
<!-- then validate whether user has logged in -->
<map: act type="ndv-session-validator">
<map: act type="ndv-act-category">
<map:redirect-to uri="protected"/>
</ map: act >
<map:redirect-to uri="1ogin"/>
</ map: act >
</ map: act >
<I-- value for the category nane fail ed,
let’s ask it again.
-->
<map:redirect-to uri="CATEGORYNEW />
</ map: mat ch>

Since the name is ok and the user islogged in, we end up in action mdv-act-category. Thisis mapped with class
MDYV CategoryAction, as shown in sitemap.xmap.

<map: acti ons>

'<'rrap: acti on nane="ndv-act - cat egory"
src="fi. hi p. ndv. web. acti ng. MDVCat egor yAct i on"/ >

</ map: acti ons>

MDYV CategoryAction is usually only interested in the action parameter. Sinceit is add, MDV CategoryAction gets a handler for the
action, asfollows:

Transl ator trans = ndvSession. get Transl ator();
Transl ati onHandl er handler =

60of 7 09/09/2002 06:10 PM

MDYV technical http://local host:8085/mdv/DOC-techguide.xml

trans. get Handl er For (Cat egor yTr ansl at i onHandl er. cl ass, action);

After that, MDV CategoryAction iterates al its parameters using the handler:

Enuner ati on enum = req. get Par anet er Nanmes() ;

whil e (enum hasMoreEl enents()) {
String param = (String) enum nextEl ement();
String[] paranVal ues = req. get Paranet er Val ues(paran;
oj ect result = handler.transl ate(param paranval ues);

What happens with the "translate” call is taken care by the translator, CategoryTranslationHandler. Let’srecall that the parameter
was setName. It is not a coincidence that CategoryTranslationHandler’ s web interface has a method by the same name -- it’s by
design. After the handler.translate -call CategoryTrandationHandler "knows' the name of the new category, and because of the
action parameter (add), it knows that a new category with that name will be created.

The creation of the new category is ordered by MDYV CategoryAction:

handl er . syncMdel ToGui (handl er. get Real Subj ect (), ndvSessi on) ;

This call in the handler means:

if (o instanceof UserCategory) uc = (UserCategory) o;

int savedl D = da. saveCat egory(uc);

Thus, the new category is saved and the user redirected to the main page (protected.xsp).

Summary and advice for developers

If you want to change how things look, modify XSL files in src/resources/protected/mdv/xstyles.

If you want to change how pages/states change (i.e. how to move from one page to another via some user action), change
src/resources/protected/mdv/sitemap.xmap

If you want MDV to handle completely different things (calendar data, e-mails, etc), derive new document/field/category classes
and possibly a DataA ccess to access different kinds of storages (ICAP, IMAP, etc).

Acknowledgements

This guide was inspired by Maiju Virtanen's guide to the previous version of MDV.

7of 7 09/09/2002 06:10 PM

